Introducing our Aquilion ONE...

ESC acquires a 640 slice CT scanner

Imaging the Heart - Current Status of CT Angiography

Toshiba and ESC sign Research Partnership Agreement

...a view of the future

The European Scanning Centre Newsletter

Special Edition
In order to continue to provide a first class imaging service, the ESC has recently acquired the world’s most powerful CT scanner, the Toshiba Aquilion ONE™ 640 slice scanner, which has been installed alongside its EBCT scanner.

Dr Sarah Howling, ESC’s Director of Imaging comments: “I am seldom allowed to shop with such latitude! To create a dream list and then succeed in securing the top CT scanner available in the world is more than I hoped for when I joined the ESC in 2005. We selected the Toshiba scanner after detailed evaluation of all the CT systems on the market. The Aquilion ONE is the top of the CT premier league and a huge advance in technology. Our referring doctors are going to be amazed by the images and applications this will offer.”

ESC acquires a 640 slice CT scanner

The Aquilion ONE is the world’s first dynamic volume CT system, taking over 7 years to develop and at a cost of more than £500 million. With its 16cm detector, five times the size of traditional 64-slice CT scanners, and its innovative reconstruction algorithm, ConeExact, it can reconstruct 640 slices per rotation, giving unprecedented accuracy and detail. Its unique area of coverage enables scanning of most organs within one rotation, eliminating the need for helical scanning, which in turn, lowers the radiation dose dramatically (0.8 mSv for a CT angiogram compared to 2-3 for other scanners and 6-10 mSv for conventional angiograms).

The new scanner is likely to offer numerous applications but in particular has significant advantages in cardiac, neurological, musculoskeletal, oncology and gastroenterology imaging.

Cardiac Imaging – CT angiography

Coronary CT angiography (CTA) is gaining increasing acceptance as a viable alternative to invasive coronary angiography for selected patient groups. Its advantages are speed, minimal risk of complications, and low morbidity. However, its more widespread use is presently limited by concerns about the spatial definition of current scanners, including the EBCT scanner, and also the radiation dose to patients. The Aquilion ONE scanner overcomes these limitations and in particular its high temporal and spatial resolution allows detailed imaging of all of the coronary arteries, including the distal branches, as well as clearly differentiating between soft and calcified plaque. This goal has been unachievable by conventional angiography.

The proprietary software of the Aquilion...
ONE also quantifies the extent of soft plaque burden as well as accurately assessing the degree of stenosis. Such imaging capabilities are likely to transform the management of CHD by enabling practitioners to follow up the progression of soft and calcified atheromatous plaque and assess the response to aggressive preventive management.

Apart from its dramatic dose reduction, another important aspect is the fact that cardiac arrhythmia or heart rates up to 130 bpm are no longer an issue as is frequently the case with helical 64 slice scanning, including dual-source scanners. This is because of the very fast speed of the image acquisition and the online assessment of the imaged RR-interval by the new system’s software which ensures that image reconstruction can proceed as planned.

An exciting development of the Aquilion One is its unique ability to acquire volumetric analysis of the entire heart in one rotation which allows the acquisition of perfusion data. Current studies are exploring the use of adenosine-induced tachycardia in the functional assessment of any stenosis observed during the CT angiogram.

Neurology

The ability of the Aquilion ONE to acquire 16cm volumetric scans enables perfusion studies to be performed. The ESC has established close links with neurologists and neuroradiologists from the National Hospital for Neurology and Neurosurgery and sees a major role for the new scanner in cerebral blood flow imaging in patients at risk of stroke. Its ability to perform high quality cerebral CT angiography will be clinically useful in the diagnosis and follow-up of carotid stenosis, arteriovenous malformations and aneurysms.

Dr Paul Jarman, consultant neurologist at the National Hospital for Neurology and Neurosurgery says:

>“This scanner should provide high quality cerebral CT angiography, an imaging modality which is likely to supersede MRI angiography and provide an alternative to invasive angiography for many patients.”

Musculoskeletal

The new scanner will for the first time also allow imaging of joint kinematics, demonstrating moving joints in real time (bone, ligaments and tendons by viewing in different window width/levels). As static imaging often fails to elucidate the cause of joint symptoms which may be due to bone impingement, this is potentially an important application for sports injuries.

Summary

In summary, the Aquilion ONE 640 slice CT scanner represents a major advance in scanning technology with unrivalled sensitivity and spatial resolution. As such, it promises to offer both patients and practitioners a viable non-invasive alternative to many invasive diagnostic procedures, and with the added advantage of also being quicker and cheaper. However, we feel this is just the start and with our talented radiography and radiologist team we are only just beginning to consider its dynamic possibilities. It is an exciting time for all of us!
CT scanning has evolved hugely in the past two decades. Improvements in speed and resolution have been so significant that it is now possible to image structures as small and as rapidly moving as the coronary arteries with temporal and spatial resolution approaching that of invasive coronary angiography.

Technical background
Successive generations of MDCT scanners have rapidly evolved from 2 to 4, 8, 16, 32, 40, 64, 128, 256 and now 320 rows of detectors (such as the Aquilion ONE).

The consequent reduction in scan times renders images less susceptible to cardiac dysrhythmias.

Spatial resolution
The coronary arteries measure from 4-5mm in the left main stem to 1mm in the distal left anterior descending artery. Sub-millimetre spatial resolution with isotropic imaging (i.e. equal resolution in all three planes) is desirable to delineate sub-millimetre coronary artery branches. In order to differentiate a 10-20% stenosis, isotropic spatial resolution of 0.3mm is considered necessary only achieved by the most up to date scanners such as the Aquilion ONE.

Temporal resolution
The temporal resolution of a multi-detector CT scanner is determined by the speed of rotation of the gantry around the patient. Only 180° of rotation is required for image generation, so temporal resolution is equal to half the gantry rotation speed. Current technology has reduced a complete rotation to 250ms. Ideally, a temporal resolution of <50ms is needed for coronary CT angiography (CTA) to cover all heart rates. However, with new reconstruction algorithms and dual source scanners, a temporal resolution of 75ms is achievable.

ECG gating
Images are typically acquired over a number of cardiac cycles at time points when cardiac motion is least, usually in late diastole (65% to 85% of the R-R interval). This requires acquisition of data to be synchronised with the cardiac cycle by reference to a simultaneously recorded ECG.

The most commonly used ECG synchronisation techniques for cardiac CT scanning are prospective ECG triggering and retrospective ECG gating.

Radiation dose
Radiation doses in MDCT coronary angiography depends on a number of fixed and adjustable factors and now range from less than 1mSv to 5mSv on state of the art scanners, which is lower than invasive coronary angiography (typically 6 – 10mSv). The radiation exposure is higher when using
retrospective ECG gating, compared with prospective imaging, because of the continuous x-ray exposure and overlapping data acquisition.

CT Angiography: step by step

Premedication. If the heart rate is more than 65 beats/min, an oral or intravenous beta-blocker is usually administered, although not required with 640 slice scanners. Sublingual nitrates immediately before scanning help dilate the coronary arteries.

Intravenous contrast delivery. A high concentration of contrast agent is injected intravenously at a high flow rate (4-5mL/s) followed by a 40-50ml saline chaser bolus to wash out contrast from the right ventricle.

Post-processing techniques. Analysis of the resultant enormous dataset is performed on dedicated powerful workstations. As with all radiology, the experience of both the radiographer acquiring the images and the radiologist in reporting them is crucial to the quality of the images and thus final report.

Clinical applications of CT coronary angiography
MDCT is now an established alternative to cardiac catheterisation in the diagnosis of coronary artery disease (CAD). Studies have shown sensitivities of up to 97% and specificities as high as 94% for the detection of haemodynamically relevant coronary artery stenoses (>50% luminal diameter reduction) using 16-slice and 64-slice CT. Whilst the positive predictive value of MDCT using 64-slice MDCT is relatively modest at only 80-85%, the negative predictive value approaches 100%, suggesting that CT can reliably rule out the presence of significant coronary artery stenoses and makes coronary CTA useful in symptomatic patients who are considered for invasive angiography but have a low-to-intermediate pre-test probability of coronary artery disease. This approach is currently favoured in NICE guidelines (due to be published early 2010). Patients whose clinical presentation suggests a high likelihood of having a stenosis remain more likely to benefit from invasive angiography, which provides the option of immediate intervention.

Indications for CT angiography
- Atypical chest pain
- Exclude coronary heart disease
- Equivocal exercise stress test
- Coronary artery bypass graft evaluation
- Evaluate stent stenosis
- Cardiac vein imaging to guide ablation therapy
- Anomalous coronary artery anatomy
- Congenital heart disease
- Triple rule out (pulmonary, coronary and aortic angiogram)

non-invasive visualisation of coronary arteries with simultaneous evaluation of the pulmonary arteries, thoracic aorta, and other intra-thoracic structures that might explain signs and symptoms that overlap with an acute coronary syndrome.

Plaque imaging
A number of studies have evaluated the ability of CT to distinguish between different types of atherosclerotic plaque, with the hope that this may help identify patients at elevated risk of future coronary events. Plaques may be classified as calcified, mixed or soft, based on density measurement. The clinical application of coronary CTA for risk stratification based on plaque characterisation is not yet supported by convincing scientific evidence but is an area of much interest particularly with the ability of the latest scanners to accurately visualise and quantify the vulnerable soft cholesterol-rich plaque which may exist in the absence of calcification.

Bypass grafts assessment
CT permits non-invasive assessment of the state of previous bypass grafts, including the anastamosis and the distal native arteries. Several studies performed using 16- and 64-slice MDCT have shown that occlusion of bypass grafts and stenoses in the body of the grafts can be detected with high accuracy. Native coronary arteries are more difficult to assess since they may become heavily calcified following bypass surgery making interpretation of stenoses difficult. This limits the clinical usefulness of

CTA vs conventional angiography
Advantages
- Non-invasive
- Safer (no risk of local damage or stroke)
- Quicker - avoids day case admission
- Ability to visualise vulnerable soft plaque
- Visualise anomalous anatomy
- Comparable spatial resolution (0.3mm with 640 slice scanners)
- Lower radiation
- Cost - cheaper

Disadvantages (16-64 slice scanners)
- Unable to scan arrhythmias (AF or high heart rate)
- Lower spatial resolution (>0.5 mm)
- Prone to artefact from high coronary artery calcium deposition
- Cannot proceed to immediate therapeutic procedure e.g. angioplasty/ stent insertion

‘Aquilion ONE promises to be the exception with a reported spatial resolution of 0.3mm’
Coronary CTA in patients who develop chest pain after bypass surgery, as it usually will be necessary to assess the status of both the bypass grafts and the native coronary arteries. When it is necessary to re-operate, MDCT can be critical in delineating the position of bypass grafts relative to the sternum.

Coronary stents
Stent imaging is challenging due to the small size and high-density of stent material with resulting artefacts that can obscure the lumen. Accurate stent assessment depends upon several factors, including stent type and material, stent dimensions (particularly the diameter) and the vessel in which the stent has been implanted. In-stent re-stenosis can be suggested when the lumen does not appear to completely enhance but current studies using 64 slice scanners have not yet provided conclusive evidence to support the role of CT for routine follow-up of patients after coronary stent implantation, although more modern scanners have the potential to overcome this as they are less affected by artefact and can offer clearer images of the stent lumen.

Ventricular assessment
Multiphase studies allow determination of both end-diastolic and end-systolic volumes using semi-automated software and hence allow accurate calculation of stroke volume, ejection fraction and cardiac output as well as regional wall motion. There is good correlation between MDCT and cine cardiovascular magnetic resonance (CMR). However, due to the relatively high radiation dose, MDCT is currently not recommended for the evaluation of cardiac function alone, but these data are frequently available from studies acquired for other primary indications. CT also allows global cardiac assessment in patients unsuitable for MRI.

Myocardial perfusion
An area of exciting current study is the use of contrast-enhanced CT to visualise infarcted myocardium during first-pass and late perfusion imaging. Preliminary studies assessing myocardial enhancement and

Cardiac function analysis of a patient with an anomalous LAD arising from RCA demonstrating reduced wall motion in the area from the anterior wall of the left ventricle to the apex (blue is reduced, green to red is normal). Image courtesy of Charité Hospital, Berlin using an Aquilion ONE scanner.

Wall Motion Wall Thickening Proportional Ejection Fraction

CTA of a patent stent in the LAD. Image acquired using Aquilion ONE 320 detector scanner.

Coronary CTA can reliably rule out the presence of significant coronary artery stenoses and makes coronary CTA useful in symptomatic patients who are considered for invasive angiography but have low to intermediate pre-test probability of coronary artery disease'
Infarct size early after acute myocardial infarction have shown good correlation between MDCT and CMR.

Congenital anomalies

Whilst echocardiography and CMR imaging remain the techniques of choice for the assessment of patient with complex congenital heart disease, MDCT is now emerging as a viable alternative to CMR (claustrophobia, pacemakers etc). MDCT coronary angiography can also be used to identify the course of anomalous coronary arteries.

Defining pulmonary vein anatomy

Cardiac CT is routinely employed in planning of electrophysiological procedures, such as atrial fibrillation ablation since a three-dimensional CT image of the atria can be superimposed on the electro-anatomical map, improving the ability to localise the pulmonary veins and hence reduce fluoroscopy times.

Recent technical developments

Computed tomography has gone through rapid improvement during the last few years. Scanners with more detector rows allow a greater volume to be covered in one rotation of the scanner, significantly reducing breath-hold time and amount of contrast. The latest 320-detector (640-slice) scanners increase coverage and decrease overall scan time. Dual-source CT (DSCT) also offers improvements in temporal resolution. These scanners have two sets of X-ray tubes and detectors, which are mounted onto the gantry at approximately 90° to each other, producing faster scanning and temporal resolutions of 75ms, although they are unable to image the heart in one rotation.

Summary

Computed tomography has advanced rapidly during the past years. Current MDCT technology permits reliable and accurate visualisation of the coronary arteries. The technique is firmly established but recent technological advances on a number of fronts are likely to improve the accuracy and reliability of CT for assessing coronary artery disease and, if the expected reductions in radiation dose are achieved, the spectrum of accepted clinical indications will undoubtedly expand.

Our Radiologists

In order to further enhance the quality of our reporting of the exceptional images from the new scanner, we have recently recruited several additional specialist radiologists, from many of the top institutions.

Our team of radiologists with their NHS base and expertise is:

Cardiac

- Dr Simon Padley, The Royal Brompton Hospital
- Dr Paras Dalal, Harefield Hospital
- Dr Sujal Desai, King College Hospital

Chest

- Dr Sarah Howling, The Whittington Hospital

Neuro

- Dr Katherine Miszkiel, National Hospital for Neurology & Neurosurgery
- Dr Jane Evanson, Bart’s and The London

Abdomen/pelvis

- Dr Chris Harvey, Hammersmith Hospital
- Dr Chris Schelvan, St Mary’s Hospital
- Dr Niall Power, Bart’s and The London

Musculo-skeletal

- Dr Charles House, The Middlesex and UCL Hospital
- Dr Simon Bleese, full time private

Urology

- Dr Jeevan Kumaradevan, The Whittington Hospital
As part of the collaboration between the ESC and Toshiba Medical Systems, the two organisations have entered into a long-term Partnership Agreement.

The main features of this are:

• The ESC will become Toshiba’s UK reference site and centre of excellence for CT imaging.
• The ESC will be provided with all upgrades for the new scanner for the duration of the agreement, thereby maintaining it at the cutting edge of scanning technology.
• Toshiba will support the ESC as an academic centre by jointly funding a Toshiba Research Fellow for a minimum of 3 years.

Dr Matthew Stork, Managing Director, Toshiba Medical Systems UK says: “Toshiba Medical Systems are delighted to have formed a partnership with the European Scanning Centre to work together on research in this exciting new area. We have just started exploring the benefits of dynamic volume CT. Whether it is for cardiac, neuro, abdominal, orthopaedic or other examinations, the potential implications of functional CT studies are widespread. The European Scanning Centre is an ideal partner for us, working with leading academics across many therapeutic areas providing a broad scope for research.”

The Research Fellow will be based at the ESC and will carry out research in a number of agreed areas - for example myocardial and cerebral perfusion.

Dr Paul Jenkins, Medical Director of ESC shaking hands on the agreement with (right), Dr Matthew Stork, Managing Director, Toshiba Medical Systems UK.

The results of this research will be published in peer reviewed journals and also presented at national and international scientific meetings.

Dr Paul Jenkins, Medical Director of ESC says: “We are very excited about our partnership with Toshiba and in becoming their UK reference site. The establishment of a Toshiba Research Fellow will allow us to further our aim of becoming an academic centre and we look forward to developing our clinical applications with the new scanner, particularly the role of CT angiography in both cardiac and cerebral studies as well as functional perfusion studies.”

The building works at the ESC to accommodate the new scanner have resulted in a few additional changes. Gone is our old neon-lit office and now in its place is a stylishly designed new waiting room, a huge improvement on the old corridor seating which patients previously had to endure! Top interior designer, Hugh Berry, has worked his magic again and given the room a warm elegant feel but adding a hint of cosiness to make clients feel relaxed both before and after their scans. The lounge photographs on the wall are of Harley Street architecture and were taken by our consultant radiologist, Dr Sarah Howling whose love of digital imaging also extends to photography.

The refurbishments have also resulted in the creation of a new ultrasound room as well as two large and beautifully appointed consulting rooms. We are currently looking to occupy these by medical practitioners and if this is of potential interest, please contact the centre on 020 7436 5755 for further information.

Shown here (left), Dr Paul Jenkins, Medical Director of ESC shaking hands on the agreement with (right), Dr Matthew Stork, Managing Director, Toshiba Medical Systems UK.